

1

2

Laplace's equation

- Laplace's equation is reasonably straight-forward:

$$
\nabla^{2} u(\mathbf{x})=0
$$

- This says that the sum of concavities at every point is zero
- Forces are proportional to acceleration,
so this essentially says the forces at each point are balanced
- If all the forces are balanced,
there will be no change to velocity
- If the system is not moving, it will remain so

4

Laplace's equation

- A solution is decided by boundary values:

$$
\frac{\partial^{2}}{\partial x^{2}} u(x)=0
$$

- If $u(a)=u_{a}$ and $u(b)=u_{b}$, we have a trivial unique solution:

$$
u(x)=u_{a}+(x-a) \frac{u_{b}-u_{a}}{b-a}
$$

- If $u(a)=u_{a}$ and $u^{(1)}(b)=u_{b}^{(1)}$, we have another trivial unique solution:

$$
u(x)=u_{a}+(x-a) u_{b}^{(1)}
$$

- If $u^{(1)}(a)=u_{a}{ }^{(1)}$ and $u^{(1)}(b)=u_{b}{ }^{(1)}$, we either have no solutions or infinitely many solutions

> - Sound familiar?

5

- Notice that for if a solution satisfies Laplace's equation, it is also a steady-state solution for both the heat equation and the wave equation

$$
\frac{\partial^{2}}{\partial x^{2}} u(x)=0
$$

- A solution to the heat equation converges to a solution of Laplace's equation
- A solution to the wave equation oscillates around a solution to Laplace's equation

Finite-difference approximation

- In two and three dimensions, it becomes more interesting:

$$
\begin{gathered}
\frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0 \\
\frac{\partial^{2}}{\partial x^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial y^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial z^{2}} u(x, y, z)=0
\end{gathered}
$$

- In two dimensions,
this requires a region in the plane with a specified boundary
- In three dimensions,
this requires a volume with a specified boundary
- A Dirichlet (fixed) or Neumann (fixed derivative) must be specified at each point on the boundary

7

Finite-difference approximation

- Applications of Laplace's equation include:
- If all the walls in a room are either insulated or at fixed (and possibly different temperatures), the temperatures throughout the room will converge to a solution to Laplace's equation
- The gradient would specify the direction of maximum increase in temperature at any point
- If each point on a boundary either has a specified fixed voltage or is insulated, and the region is devoid of any charges, the potential throughout the region is specified by Laplace's equation
- The gradient of the solution specifies the direction that a test charge would follow

Approximating solutions

- As before, substitute our divided-difference approximations for the second partial derivative into the equation
$\frac{u(x+h, y)-2 u(x, y)+u(x-h, y)}{h^{2}}+\frac{u(x, y+h)-2 u(x, y)+u(x, y-h)}{h^{2}}=0$
- Multiply both sides by $-h^{2}$ and collect:

$$
4 u(x, y)-u(x+h, y)-u(x-h, y)-u(x, y+h)-u(x, y-h)=0
$$

9

Approximating solutions

- Divide the region into $n_{x} \times n_{y}$ squares and define

$$
\begin{aligned}
x_{i} & =a_{x}+i h \\
y_{j} & =a_{y}+j h
\end{aligned}
$$

11

The wave equation

Finite-difference approximation

- Now substitute x_{i} and y_{j} into our equation

$$
4 u\left(x_{i}, y_{j}\right)-u\left(x_{i}+h, y_{j}\right)-u\left(x_{i}-h, y_{j}\right)-u\left(x_{i}, y_{j}+h\right)-u\left(x_{i}, y_{j}-h\right)=0
$$

- Next, recognize that $x_{i} \pm h=x_{i \pm 1}$ and $y_{j} \pm h=y_{j \pm 1}$,

$$
4 u\left(x_{i}, y_{j}\right)-u\left(x_{i+1}, y_{j}\right)-u\left(x_{i-1}, y_{j}\right)-u\left(x_{i}, y_{j+1}\right)-u\left(x_{i}, y_{j-1}\right)=0
$$

- We don't know what $u\left(x_{i}, y_{j}\right)$ is, so we will try to approximate it with an unknown $u_{i, j}$

$$
4 u_{i, j}-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}=0
$$

Finite-difference approximation

- We can visualize this as follows:

$$
4 u_{i, j}-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}=0
$$

Finite-difference approximation

- Note what this says:

$$
4 u_{i, j}-u_{i+1, j}-u_{i-1, j}-u_{i, j+1}-u_{i, j-1}=0
$$

- Rewrite this as:

$$
4 u_{i, j}=u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}
$$

- Now, divide by four:

$$
u_{i, j}=\frac{u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}}{4}
$$

- If u satisfies Laplace's equation,
then $u\left(x_{i}, y_{j}\right)$ will be the average of the points around it

Finite-difference approximation

- Now, if $\left(x_{i}, y_{j}\right)$ is a boundary point,
its value or the slope at that point is already given
- Each point in red has a boundary value

15

Finite-difference approximation

- Let's zoom in at a few points: $u_{2,4}$
- The finite-difference equation says:

$$
4 u_{2,4}-u_{3,4}-u_{1,4}-u_{2,5}-u_{2,3}=0
$$

17
Finite-difference approximation

- Let's zoom in at a few points: $u_{9,3}$
- The finite-difference equation says:

$$
\begin{array}{r}
4 u 4 u_{9,5}, \overline{9,3} t t_{10,310,3} t_{\overline{8}, 3} u_{8,3} l t_{9,4-\overline{, 4}} l t_{9,2}=0 \\
4 u_{9,3}-u_{10,3}-u_{8,3}-u_{9,4}=5
\end{array}
$$

18

Finite-difference approximation

- Let's zoom in at a few points: $u_{8,6}$
- The finite-difference equation says:

$$
\begin{aligned}
& 4 u_{8,4} 4 t_{\overline{8}, 6 \overline{6}, 6} l t_{\overline{9}, 6}, u_{\overline{7}, 6} l t_{\overline{7}, \psi \overline{8}, 7} 15 u_{8}, \mathrm{~S}=0 \\
& 4 u_{8,6}-u_{9,6}-u_{7,6}=15
\end{aligned}
$$

19

Finite-difference approximation

- How do we deal with an insulated condition?
- If the derivative at an insulated boundary point is zero,

$$
\text { then } \frac{u_{8,9}-u_{8,8}}{h}=0 \text { and so } u_{8,9}-u_{8,8}=0 \text { or } u_{8,9}=u_{8,8}
$$

23

24

25

26

A simpler example

- Copying the solutions back to our room

27

Three dimensions

- With a little effort, you should realize that the finite-difference approximation of Laplace's equation in three dimensions is:

$$
\begin{array}{r}
\frac{\partial^{2}}{\partial x^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial y^{2}} u(x, y, z)+\frac{\partial^{2}}{\partial z^{2}} u(x, y, z)=0 \\
6 u_{i, j, k}-u_{i+1, j, k}-u_{i-1, j, k}-u_{i, j+1, k}-u_{i, j-1, k}-u_{i, j, k+1}-u_{i, j, k-1}=0
\end{array}
$$

- As before, the value at each point is the average of the six points surrounding it:

$$
u_{i, j, k}=\frac{u_{i+1, j, k}+u_{i-1, j, k}+u_{i, j+1, k}+u_{i, j-1, k}+u_{i, j, k+1}+u_{i, j, k-1}}{6}
$$

28

Three dimensions

- We can visualize this as follows:

$$
u_{i, j, k}=\frac{u_{i+1, j, k}+u_{i-1, j, k}+u_{i, j+1, k}+u_{i, j-1, k}+u_{i, j, k+1}+u_{i, j, k-1}}{6}
$$

Three dimensions

- Suppose we find a box in \mathbf{R}^{3} is such that our region is entirely contained in

$$
\left[a_{x}, b_{x}\right] \times\left[a_{y}, b_{y}\right] \times\left[a_{z}, b_{z}\right]
$$

- This region should be such that it can be divided into cubes of dimensions h^{3} so $b_{x}-a_{x}=n_{x} h$, etc.
- Thus, we can define

$$
\begin{aligned}
& x_{i}=a_{x}+i h \\
& y_{j}=a_{y}+j h \\
& z_{k}=a_{z}+k h
\end{aligned}
$$

- We will approximate $u\left(x_{i}, y_{j}, z_{k}\right)$ by $u_{i, j, k}$
- As in two dimensions, this will define a system of linear equations which we can solve

Example

- Here is one example of such a problem:
- Consider a cube such that two opposite faces are at either 100 V or $100^{\circ} \mathrm{C}$ and the four remaining sides are at 0 V or $0^{\circ} \mathrm{C}$
- We could choose an h so that $n_{x}=n_{y}=n_{z}=30$

31

Example

- Here is another example of such a problem:
- Consider a cube such that all sides are at 0 V or $0^{\circ} \mathrm{C}$ and there are three point sources within that are at 100 V or $100^{\circ} \mathrm{C}$
- Again, we could choose an h so that $n_{x}=n_{y}=n_{z}=30$

Example

- Here is another example of such a problem:
- Consider a cube such that one side is at 0 V or $0^{\circ} \mathrm{C}$ and the remaining five sides are insulated
- There is a point source at the center at 100 V or $100^{\circ} \mathrm{C}$
- Again, we could choose an h so that $n_{x}=n_{y}=n_{z}=14$

Example

- Thus, for most unknown points, the linear equation would be:

$$
6 u_{i, j, k}-u_{i+1, j, k}-u_{i-1, j, k}-u_{i, j+1, k}-u_{i, j-1, k}-u_{i, j, k+1}-u_{i, j, k-1}=0
$$

- If one of the six neighboring points is the source at 100, the equation would be

$$
\begin{aligned}
6 u_{i, j, k}-u_{i+1, j, k}-u_{i-1, j, k}-u_{i, j+1, k}-100-u_{i, j, k+1}-u_{i, j, k-1} & =0 \\
6 u_{i, j, k}-u_{i+1, j, k}-u_{i-1, j, k}-u_{i, j+1, k}-u_{i, j, k+1}-u_{i, j, k-1} & =100
\end{aligned}
$$

- If one of the six neighboring points is the wall kept at 0 , the equation would be

$$
\begin{array}{r}
6 u_{i, j, k}-u_{i+1, j, k}-u_{i-1, j, k}-u_{i, j+1, k}-u_{i, j-1, k}-u_{i, j, k+1}-0=0 \\
6 u_{i, j, k}-u_{i+1, j, k}-u_{i-1, j, k}-u_{i, j+1, k}-u_{i, j-1, k}-u_{i, j, k+1}=0
\end{array}
$$

- If one of the six neighboring points is an insulated point, the equation would be

$$
5 u_{i, j, k}-u_{i+1, j, k}-u_{i, j+1, k}-u_{i, j-1, k}-u_{i, j, k+1}-u_{i, j, k-1}=0
$$

Summary

- Following this topic, you now
- Understand Laplace's equation and its application
- Know how to convert Laplace's equation into a finite-difference equation
- Know how to break a region into a grid of points
- Have seen four examples including Dirichlet (fixed) and insulated boundary conditions

41

42

